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1.0 Introduction

A number of empirical and semi-analytical optical models have been developed to

simulate the behavior of the underwater light field for Case 1 waters (Morel and Prieur, 1977;

Smith and Baker, 1982; Baker and Smith, 1982; Gordon et al., 1988; Morel, 1988; Mitchell and

Holm-Hansen, 1991). Case 1 waters are dominated by the optical properties of phytoplankton

and covarying detrital byproducts of production. Such models have been used as the basis for

classifying water types and/or for developing remote sensing algorithms.

However, the accuracies of these models decrease when environmental conditions depart

from those represented in the data set used to empirically derive the covariance relationships.

For instance, gelbstoff is produced when grazing, photolysis, and other mechanisms degrade the

viable plant matter at and downstream from phytoplankton blooms. The gelbstoff-to-chlorophyll

ratio will change dramatically for a parcel of upwelled water over a relatively short time, from

chlorophyll-rich and gelbstoff-poor to gelbstoff-rich and chlorophyll-poor. Solid evidence for the

occurrence of this scenario can be found in two separate studies. Peacock et al. (1988) found

that absorption attributed to gelbstoff at 440 nm was at least 16 fold that due to phytoplankton

pigments within an offshore jet from an upwelling region, whereas pigments were the dominant

absorption agents at the upwelling center near the coast. Similarly, Carder et al. (1989) found

that particulate absorption at 440 nm decreased 13 fold while gelbstoff absorption at 440 nm

increased by 60% in ten days for a phytoplankton bloom tracked from the Mississippi River

plume to Cape San Bias. This widely varying gelbstoff-to-chlorophyll ratio has a profound effect

on upwelled radiance in the blue 443 nm band of the CZCS, and a smaller but still significant

effect in the green 520 nm band. The correspondence in absorption at 443 nm and 520 nm

between gelbstoff and chlorophyll creates erroneously high estimates of pigment concentration

in those models which rely solely upon either of these spectral bands to indicate absorption due

to phytoplankton.

Carder et al. (1991) proposed that a short wavelength channel at around 410 nm could be

used to distinguish gelbstoff (and other degradation products) from chlorophyll. A channel at

412 nm will be available not only on the Sea-Viewing-Wide-Field-Sensor (SeaWiFS), but also

on the Ocean Color and Temperature Scanner (OCTS), and on the Moderate Resolution Imaging

Spectrometer (MODIS). A semi-analytical chlorophyll a algorithm for Case 1 and gelbstoff-

rich Case 2 waters has been developed (Carder et al., 1996; Carder et al,. 1997) and will be

thoroughly tested during the SeaWiFS project. Only a brief synopsis of the algorithm and recent

upgrades will be reported here.



Extensivefield datasetsareneededto evaluate modelperformancewith time andspace.
Performanceshouldbebestwhereparameterizationhascapturedthenaturalvariationsin pigment
packagingfor the dominantplanktongroupspresent,largely a function of nutrient availability
andrecentlight history. Acquiring suchdatasetson a global scaleis a major community goal
during the next few years,and SeaBAMprovidesjust the beginningof such tests. We have
developeda scenariothat can both guide the parameterizationprocessand provide an initial
implementationof thealgorithmfor muchof theocean. We will testthe modelagainst awell-
calibrated global dataset contributedby investigatorsusing four different sensors,two with
measurementscollectedjust below theseasurfaceandtwo collectedjust above.

2.0 Algorithm Description

After light enters the ocean, some of it is eventually scattered back up through the surface.

This light is called the water-leaving radiance, Lw(_,), and it can be detected from space. The

magnitude, spectral variation, and angular distribution of this radiance depend on the following:

the absorption and backscattering coefficients of the seawater, a(L) and bb(_,), respectively (known

as the inherent optical properties); the downwelling irradiance incident on the sea surface,

Ea(X,0+); and the angular distribution of the light within the ocean. To make things easier, we

divide seawater into three components, each one having distinct optical properties of its own.

These components are the seawater itself (water and salts), the particle fraction, and the dissolved

fraction. Fortunately, a(X) is simply equal to the sum of the absorption coefficients for each

component, and, to first order, bb(_,) is equal to the sum of the backscattering coefficients. If we

can accurately describe or model each spectrally distinct component of the absorption and

backscattering coefficients, then we can determine the magnitude of each one from measurements

of Lw(_,) and Ed(0+,_,), given some assumptions about the angular distribution of light in the

water. The key here is to accurately model the spectral behavior of a(_,) for each component.

The spectral behavior of bb(_,) is less important.

The R_ model is given by the following general equation, which is adapted from Lee et

al. (1994):

f t2 bb(A)

R_(A) - O(k) n 2 [n(h) + bb(k)] (1)

where f is an empirical factor averaging about 0.29-0.33 (Gordon et ah, 1975; Morel and Pricur,

1977; Jerome et al., 1988; Kirk, 1991; Morel and Gentili 1996), t is the transmittance of the air-

sea interface, Q(Z,) is the upwelling irradiance-to-radiance ratio, Eu(_,)/L,(_,), and n is the real part

of the index of refraction of seawater. By making three approximations, Eq. 1 can be greatly

simplified.

1) In general, f is a function of the solar zenith angle, 00 (Kirk, 1984; Jerome et al., 1988; Morel

and Gentili, 1991). However, Morel and Gentili (1993) have shown that the ratio f/Q is

relatively independent of 00 for sun and satellite viewing angles expected for the SeaWiFS orbic

They estimate that f/Q = 0.0936, 0.0944, and 0.0929 (standard deviation + 0.005), for _, = 440,

500, and 565, respectively. Also, Gordon et al. (1988) estimate that f/Q = 0.0949, at least t\)r
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00> 20 °. Thus, we assume that f/Q is independent of _. and 0o for all SeaWiFS wavebands of

interest, except perhaps for the band centered at 670 nm.

2) t2]n 2 is approximately equal to 0.54, and although it can change with sea-state (Austin, 1974),

it is relatively independent of wavelength.

3) Many studies have confirmed that I%(X) is usually much smaller than a(X) and can thus be

safely removed from the denominator of Eq. 1 (Morel and Prieur, 1977; references cited in

Gordon and Morel, 1983), except for highly turbid waters.

These three approximations lead to a simplified version of Eq. 1,

RLs(A) --constant bb(X) (2)
a(X)

where the "constant" is unchanging with respect to X and 0o. The value of the constant is not

relevant to the algorithm since, as will be shown later, the algorithm uses spectral ratios of R_(X)

and the constant term factors out.

In the following sections, both bb(X) and a(_,) will be divided into several separate terms.

Each term will be described empirically. The equations are written in a general fashion -- i.e.,

the empirically derived parameters that describe each term are written as variables -- and the

actual values of the parameters that are used in the algorithm are shown in Table 1.

2.1 Backscattering term

The total backscattering coefficient, bb(_, ), Can be expanded as

bb(_k ) : bbw(_k) + bbp(]k)
(3)

where the subscripts "w" and "p" refer to water and particles, respectively, bb,,(t,) is

constant and well known (Smith and Baker, 1981). b_,(X) is modeled as

(4)

The magnitude of particle backscattering is indicated by X, which is approximately equal to

bbp(555), while Y describes the spectral shape of the particle backscattering.

We now need expressions for X and Y. Lee et al. (1994) use a quasi single-scattering

form of the R_ model, summarized by the following three equations:



R_ (k)
0.176 bb(k)

O(x) a (k)
(5)

bb(k) _ bb_(k) + bbp(k)

o(k) Q_(k) Qp(k)
(6)

bbp(X) _ X/[4__0] _'
(7)

The main differences here are that bb/Q is modeled explicitly rather than just bb (compare Eqs.

3 and 6), and that 400 nm is used rather than 555 nm as the normalizing point in the particle

backscattering term (compare Eqs. 4 and 7). Eq. 6 is an approximation derived from single and

quasi-single scattering theory (Lee et al., 1994).

They developed a method to determine X' and Y' empirically for a given optical station

by model inversion. The method uses measured values of R_(_,) and a(k) at -- 200 wavelengths.

The best-fit values for X' and Y' are determined using Eqs. 5-7 on a station-by-station basis.

Using this method Carder et al. (1996; 1997) determined X' and Y' for a number of optical

stations taken from 4 separate cruises to the Gulf of Mexico. We then converted the X' and Y'

values to our X and Y via

400 Y'

(_)

y= yl

using a value of 3.55 for Qp. We then compared these values of X and Y to R_(_.) values

measured at the corresponding station providing empirical relationships for both X and Y as a

function of R_(_,) (Carder et al., 1996; 1997).

The general expressions for X and Y are

x: xo + x_._(555) (9)



R:s(443)

Y : Yo + YJ. R_s(490) (I0)

where X 0, X1, Y0, and Y_ are the empirically derived constants shown in Table 1 (Carder et al.,

1996; 1997).

Accurate measurements of ag(_,) and accurate removal of reflected skylight from the R_

measurements are critical in determining Y by model inversion. Only data from the GOMEX

and COLOR cruises are used here because the ag(X) values were determined with a long-path (>

0.5 m) spectrophotometer (Peacock et al., 1994).

2.2 Absorption term

The total absorption coefficient can be expanded as

a(A) = aw(A) + a_(A) + ad(A) + ag(A) (ll)

where the subscripts "w", "_," "d," and "g" refer to water, phytoplankton, detritus, and gelbstoff

Cg" stands for gelbstoff), a,_(_,) is taken from Pope and Fry (1997). Expressions for %(_,), ad(_,),

and ag(_,) were developed as (Carder et al., 1996; 1997)

The shape of the %(_,) spectrum for a given water-mass changes due to the pigment-

package effect (i.e., the flattening of absorption peaks with increasing intracellular pigment

concentration due to self-shading; Morel and Bricaud, 1981) and due to changes in pigment

composition. A hyperbolic tangent function was chosen to model this relationship in order to

ensure that the value of %(_,)/%(675) approaches an asymptote at very high or very low values

of %(675) (Carder et al., 1991). Using logarithmic scaling for both axes results in the following

model equation for %(;_) as a function of %(675),

a_(A) = a o(A)exp[a I(A) tanh[a 2(A) in{a_(675)/a 3 (A))]]-a_(675)(12)

where the parameters ao(_,)-a3(_,) are empirically determined for each SeaWiFS wavelength of

interest. The measured data and the modeled curves for %(_,) measurements were developed by

Carder et al. (1996; 1997) from GOMEX, COLOR, and TN048 cruise data, and the parameters

ao(_,)-a3(_,) are listed in Table 1.
The method used to determine absorption coefficients for particles and for detritus

involves filtering as much as 4 liters of water through a 25 mm diameter, Gelman glass-fiber

filter (GFF). This large amount of water is used to concentrate the sample enough for accurate

measurements of the pad optical density (OD) to be determined (Shibata, 1958; Mitchell, 1990;

Nelson and Robertson, 1993; Moore et al., 1995). In order to estimate absorption coefficients

from the OD measurements, an optical path elongation factor, called 13,which is dependent upon

OD, is employed. Recently however, it has been shown that _ varies with the particle size

prevalent to a region (Moore et al., 1995). This happens because smaller particles get more



deeplyimbeddedinto the pad,providingagreaterabsorptioncross-sectionfor photonsscattered
numeroustimes than for the large particlesremainingat the surfaceof the pad. Carderet al.
(1996; 1997) chose a 13factor appropriatefor small, subtropicalparticles by averagingtwo
published 1_ factors, one developed for detritus (Nelson and Robertson, 1993) and one for

Synechococcus (Moore et al., 1995). Their 13 factor was

: 1.0 + 0.60D -°'5 (13)

ad(k) and a,(X) can both be fit to a curve of the form ax (_,) = a_ (400) exp[-Sx (k--400)]

where the subscript "x" refers to either "d" or "g" (Bricaud et al., 1981; Roesler et al., 1989;

Carder et al., 1991). Due to this similarity in spectral shape, the ad (X) term can be eliminated,

allowing both detrital and gelbstoff absorption to be represented by ag (_,). The combined

gelbstoff and detritus absorption term is thus written

aj(k) : ag(400) exp -s(_-4°°) (14)

where S is empirically determined.

Many researchers have reported that Sd = 0.011 nm -1, on average (Roesler et al., 1989).

For the GOMEX and COLOR cruises, an average value of 0.017 nm -t was measured for Sg.

Values reported by F. Hoge and R. Bidigare (personal communication) for the Sargasso Sea were

somewhat higher as are those found near swampy regions of the Gulf of Mexico. Also, a higher

value is needed to compensate for gelbstoff fluorescence, which was not included in the model.

The algorithm performance was optimized by varying S8, with the value 0.0225 nm -_ providing

the smallest residual error compared to field measurements.

2.3 Inverting the semi-analytical model

Using spectral ratios of R_ eliminates the "constant" term in Eq. 2, since it is largely

independent of wavelength. In principle, two spectral ratio equations can be used to solve for

the two remaining unknowns, %(675) and ag(400). Based on the shape of the absorption curve

for phytoplankton versus those for gelbstoff and detritus, equations using spectral ratios of

412:443 and 443:555 for R_(L) provide a good separation of the two absorption contributions.

The two equations are

Rrs(412 ) bb(412 ) a(443)

R:s(443 ) bb(443) a(412)

(15)

Rrs(443) bb(443) a(555)

Rrs(555 ) bb(555) a(443)



The right-hand side of each equation is a function of a, (675), as (400), R,, (443), R_ (490) and

R,,(555). Since the R_ values are provided on input, we now have two equations in two

unknowns. The equations can be solved algebraically to provide values for a, (675) and as (400).
The computational method of solving these equations is described in Section 2.7.

For waters with high concentrations of gelbstoff and chlorophyll, R,_(412) and R_(443)

values are small, and the semi-analytical algorithm cannot perform properly. It is thus designed

to return values only when modeled a, (675) is less than 0.06 m q, which is equivalent to chl a

of about 3-4 mg m -3. Otherwise, an empirical algorithm for chl a is used, which is described

in Section 2.5. There is presently no output for a, (675) and as (400) when the empirical chl a

algorithm is employed, but empirical algorithms for these variables are under development.

2.4 Pigment algorithm for semi-analytical case

When the semi-analytical algorithm returns a value for a,(675), chl a is determined via

a direct relationship to this value. This step requires precise knowledge of the chlorophyll-

specific absorption coefficient for phytoplankton at 675 nm, a_'(675). Quadratic regression of

log(chl a) vs. log(a,(675)) yields an equation of the form

[chl a] : Po[a_(675)] &
_16)

For a global data set of 95 points, an 1_= 0.97 coefficient of regression on the log-transformed

values was found (Carder et al., 1996; 1997), and the coefficients are displayed in Table 1. Note

that these data were determined in laboratories aboard ships and in no way were reliant upon

field measurements of R_.

2.5 Pigment algorithm for the default case

When the semi-analytical algorithm does not return a value for a,(675), usually due to low

Rrs values in high-pigment waters, we provide an empirical, two-wavelength algorithm for chl

a to use by default. Aiken et al. (1995) found that the Lw(490)/Lw(555) ratio is best for empirical

chl a determination due to its low response to gelbstoff and high saturation levels. We use an

equation of the form

[chl a] emp = 10c° _ cL R • c2 R-_• c3 R3 (17)

where

R = log
Rrs(490)Rrs ( 55 5 )

(18)



chl ae_, is called the "empirically-derived" or "default" chl a concentration, and co, c, c2, and

c3 are empirically derived constants (see Table 1).

A data set consisting of subtropical, temperate summer, and high-latitude summer stations

was created from the Carder subtropical and high-scattering data sets, NABE, and the EqPac

above- and below-water data sets (n = 378; see Section 3.2). It includes both open-ocean and

riverine-influenced stations. Third-order regression of log(chl a) against log(r35) for measured

chl a and R_(_,) in this data set resulted in values of Co = 0.2818, c_ = -2.783, c2 = 1.863, and

c3 = -2.387. The root-mean-square (RMS) error of 0.327 for three orders of magnitude variation

in chl a, including Case 2 river-plume data near the Mississippi.

2.6 Weighted pigment algorithm

Another consideration is that there should be a smooth transition in chl a values when the

algorithm switches from the semi-analytical to the empirical method. This is achieved by using

a weighted average of the chl a values returned by the two algorithms when near the transition

border. When the semi-anaiytical algorithm returns an a,(675) value between 0.03 and 0.06 m -_,
chl a is calculated as

[chi a] = w [chi a] _a + (i- w)[chl a]em p (19)

where chl as, is the semi-analytically derived value and chl aemv is the empirically derived value,

and the weighting factor is w = [0.06-a,(675)]/0.03. For lower absorption data, the semi-

analytical algorithm is used, while for higher absorption data the default algorithm is used.

2.7 Numerical computation

a,(675) and ag(400) are determined from Eqs. 15 by inverting one of the equations to

isolate ag(400), substituting into the other equation, and moving all terms to one side, yielding

a function that depends only on a,(675) (given values for R_ and Table 1 for the algorithm

parameters). The value of a,(675) at which the function crosses zero is the solution we seek.
This solution is determined computationally via the bisection method. A 33-element array of

a,(675) values, scaled logarithmically from 0.0001 to 0.06 m -_ is created, and the function is
evaluated at the two extrema. If the function changes sign between the two outermost values,

a solution exists on the a,(675) interval. The function is then evaluated at the mid-point of the

array, and the half in which the function changes sign becomes the new search interval. In this

manner, the solution interval, which will be two adjacent points on the a,(675) array, is

determined in 5 iterations. Linear interpolation across the interval yields the semi-analytical

a,(675) value, and ag(400) is determined via either one of the R,_-ratio equations using the

modeled value of a,(675). If the function does not change sign across the two outermost values,

a switch is made to the empirical, two-wavelength default algorithm.

When compared to an older lookup-table-based method (Carder et al., 1991), the bisection

method gave identical solutions to within 5 significant digits for a,(675) and ag(400), and the



coderan in 75% of the time that the lookup-table-basedversionof the code took.
The algorithm code is written in C. The program file contains about 300 lines of code

and comments. It was developed and tested on a DEC Alpha machine which uses the DEC

OSF/1 C Compiler. All of the algorithm parameters listed in Table 1 are read in from a file, so

different parameter tables can easily be constructed for different applications. The code is

available via anonymous ftp at:

ftp montypython.marine.usf.edu

/pub/swf_alg/

3.0 Algorithm Evaluation

3.1 Statistical criteria

To evaluate algorithm performance we generated the same statistics described in the

Algorithm Evaluation chapter (O'Reilly and Maritorena, this volume) using O'Reilly's stats2.pro

IDL program. These statistics are determined on the log-transformed variables, and the slope and

intercept are from Type II RMA regression. The RMS statistic they describe will be referred to

here as RMS1. We also generated values for r2 and root-mean-square error on the non-log-

transformed (linear) data. Our RMS statistic will be referred to as RMS2 and is described by

FdVS2 =

n-2

(20)

where x,,oda is the modeled value of the ith element, Xo_,i is the observed (or in situ or measured)

value of the ith element, and n is the number of elements.

We used two graphical means of evaluating algorithm performance: scatter plots of

modeled versus observed values and quantile-quantile plots (see Algorithm Evaluation chapter,

O'Reilly and Maritorena, this volume).

3.2 Tests with USF data (Carder data set)

We initially tested our algorithm with our own data set, called the Carder data set in the

Evaluation Data Set chapter (Maritorena et ai., this volume). However, the data set we present

here differs from the Carder data used in the global evaluation data set in two ways. First, we

include observed values of a_(675), and ag(400) wherever possible to go along with observed

R_(K) and chl a. Second, 17 points of high-chlorophyll, high-scattering stations, mostly from the

Mississippi River Plume region, are included. The data sources are listed in Table 2.

R,,(412), R_(443), R_(490), R_(510), and R_(555) were derived from hyperspectral R_(K)

measurements collected just above the sea surface (for measurement protocols, see Lee ct al.,

1996) by weighting to simulate the SeaWiFS band responses (Barnes et al., 1994). All chl a

values were determined fluorometrically (Holm-Hansen and Riemann, 1978). a_(675) was

determined as described in section 2.2. ag(400) was determined by measuring 0.2 uM filtered
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seawaterin a spectrophotometer.
Algorithm performancewas evaluatedon both the n=87 subset of stations which

correspondto the dataavailablein theglobalevaluationdatasetandon the full n=104set. The
algorithmparametersusedareshownin Table 1. For the n=87 subset,all but oneof the points
were determinedvia the semi-analyticalportion of the algorithm, chl a, %(675), and ag(400)

were predicted with RMS1 errors of 0.122, 0.131, and 0.252, respectively, and RMS2 errors of

0.289, 0.302, and 0.405, respectively. All of the statistics for this and for all evaluations are

shown in Table 3. The results are shown as scatter (Figure la) and quantile (Figure lb) plots.

The crosses on the plots are the points determined with the semi-analytical blended algorithm,

and all but 4 of these points are from the n=87 data set. The chl a and %(675) data appear to

be quite evenly clustered about the one-to-one line on both scatter and quantile plots with no tails

at either end. The as(400) points are predominantly below the one-to-one line and show a very
low bias. There are only 26 points in this plot because measured values of ag(400) are

infrequently available for comparison.

4 of the 17 additional high-chlorophyll points are determined by either the semi-analytical

or blended portion of the algorithm, chl a values for the other 13 points are thus determined

by the default empirical algorithm. However, since the default portion of the algorithm does not

yet return values for %(675) and ag(400), these high-chlorophyll points add little to the tests for
those variables. The RMS1 and RMS2 errors for chl a for this composite data set were 0.132

and 0.300, respectively. The results are also shown in Figure la and lb (diamonds). The

additional high-chlorophyll points extend nicely along the one-to-one line on both the scatter and

quantile plots.

3.3 Partitioning the global evaluation data set

A large (n=919) global evaluation data set consisting of measured R_ at the SeaWiFS

wavelengths and pigment measurements was collected by the SeaWiFS Project for the SeaBAM

exercise (see the Evaluation Data Set chapter, Maritorena et al., this volume). These data came

from various researchers around the U.S. and Europe. There are no observed (in situ) values of

%(675) or ag(400) provided in this data set. In addition to these data, we received 36 data points
from the equatorial Pacific, which consisted of P_ measurements made above the surface (EqPac,

courtesy of C. Davis).

Since many different locations and sensors were involved with the data collection, and

as many as four separate sensor channels must be well calibrated to provide accurate spectral

ratios of R_, an attempt was made to select an initial core set of data consistent with Case 1

waters and with each other. Also, an attempt was made to partition the data sets into ones for

regions where little pigment packaging is to be expected (e.g., high-light, non-upwelling locations

in warm, tropical and subtropical waters), and one where more packaging might be expected

(e.g., western boundary upwelling, non-summer, high latitude, etc.). To help in this task, the data

were examined with the help of two numerical filters.

The first numerical filter developed was to compare the data sets with the CZCS

chlorophyll pigment algorithm (C = 1.14 [r25]t71, r25 = R_(443)/R_(555)) to check for consistency
with this classical determinant of Case 1 waters. Figures 2c, 3c, 4c, and 5c show scatter-plots

of observed chl a versus rz5 for different groups of data with the CZCS algorithm illustrated by

the dotted line. The warm-water, subtropical and tropical data sets (Figure 2c) were mostly

l0



consistentwith the CZCS algorithm for pigmentvaluesless thanabout 1 mg m3. Whendata
from easternboundaryandupwellinglocations(Figure3c) wereappliedto theCZCSalgorithm,
however, they provided chlorophyll a values typically 50% to 90% lower than measured,

suggesting that perhaps regional algorithms are needed to obtain best results for such waters.

This helped separate the data into two water types which we will call "unpackaged" pigment

waters and "packaged" pigment waters. Since this "packaging" filter is not applicable using only

spacecraft-derived data, a second type of packaging filter was sought.

A second numerical filter was developed using the ratios r12 (= R_(412)/R_(443)) and r25

(Figures 2d, 3d). For waters with unpackaged pigments, the line r_2 = 0.95 [rzs] °_6 was used to

separate high-gelbstoff data points (those below the line in Figures 2d, 3d) from the Case 1 data.

The gelbstoff-rich Case 2 data shown in Figure 2c and 2d had a8(400) values typically in excess

of the relationship 0.12 [chl a] °7 (Figure 2e), where 0.12 has the units m 2 (rag chl) _. Since this

data set contained both gelbstoff and chlorophyll a measurements and had been acquired by

making R_ measurements against a reflectance standard, minimizing calibration uncertainties (see

Carder and Steward 1985), it was used to evaluate tropical and subtropical waters for gelbstoff-

rich conditions and to flag data sets with sensor-calibration uncertainties.

To identify waters with more packaged pigments using remotely sensed data, Case 1 data

from a traditional upwelling region (e.g., CalCOFI) were examined. These data are included in

Figure 3c for comparison to the unpackaged data of Figure 2c. Since pigment packaging reduces

the absorption for a given concentration of pigments far more at 443 nm than at 555 nm, and

somewhat more at 443 nm than at 412 nm, packaging significantly reduces r_ while increasing

the rt2 ratio somewhat. This, then places packaged data points below the rl2 --- 0.95 [r25 ]o.16 line

even without excessive gelbstoff concentrations (see Figures 3d and 3e), at least for points with

r25 values in excess of a value of about 3.0.

For the numerical filter approach to work consistently at separating even more heavily

packaged data sets from unpackaged ones, more data sets need to be evaluated. Measurements

of particulate and detrital absorption would be useful. There are regions with pigments packaged

even more extensively than those represented in this study (Section 4.2), and algorithm

parameterization for those environmental situations is being pursued. A nascent outline of an

approach to vary algorithm parameters using measurements from space is suggested by our work

with the r12 vs. r25 numerical filter. In future research, this approach will be expanded to other

band ratios and data sets, and supplemented with a temperature-anomaly approach based upon

estimating nutrient-replete conditions (Kamykowski 1987). This should improve our facility and

accuracy in modulating the pigment-absorption parameters for future ocean-color algorithms.

3.4 Algorithm evaluation with the "unpackaged" data set

Those data sets generally found consistent with the CZCS algorithm line as well as

occurring above the line rtz = 0.95 [r25]°at for points where r25 > 3.0, were classified as

"unpackaged", in reference to the pigment effects on the optics prevalent at those locations at the

time of data collection. There are 378 data points in this ensemble "unpackaged" data set: 104

USF data points and 37 EqPac equatorial Pacific points, all measured above-surface using the Lee

et al. (1996) protocols, and 126 EqPac points and 112 North Atlantic Bloom Experiment (NABE)

points, all measured below-surface using the Mueller and Austin (1995) protocols. Of these

points, 339 (90%) were processed by the semi-analytical portion of the algorithm yielding RMS 1

11



andRMS2errorsof 0.103and0.240,respectively.Thescatter(Figure2a)andquantile (Figure
2b) plots overlay the one-to-oneline at the ends as well as in the middle. For the log-
transformedvariables,theType II RMA slopeandinterceptwere 1.003and0.001,the biaswas
0.000,and r2 was 0.943. When all 378 data points were considered using the semi-analytical

algorithm plus the blended and empirical algorithms RMS1 and RMS2 errors were 0.107 and

0.251, respectively. The Type II RMA slope :,ld intercept were 1.001 and 0.002, the bias was

0.001, and r2 was 0.962. Table 3 has a a complete summary of these statistics.

3.5 Algorithm evaluation with the "packaged" data set

Three data sets within the global evaluation set were numerically diagnosed as coming

from waters where the pigments were more "packaged" or at least different from those of the

unpackaged, largely tropical and subtropical data sets. Simulations of the optical properties for

these regions required some minor alterations of the phytoplankton absorption characteristics,

based upon decreased specific absorption observed in the CalCOFI study area. The new

parameters, shown in Table 4, are used to define a slightly different, "packaged" algorithm. The

forms of the algorithm equations are the same except for the chl a-a,(675) relationship, which
is

chl a : i0 [po*p_z°g_°{a*(67S)l*;h[logL0(a,{675))l_] {21)

There are 355 points in this ensemble "packaged" data set, consisting of CalCOFI (n=303), AMT

(n=42), and North Sea (n=10). 341 (96%) points from this ensemble "'packaged" data set passed

the semi-analytical portion of the new algorithm, yielding RMSI and RMS2 errors for chl a

retrieval of 0.118 and 0.289, respectively. The Type II RMA slope and intercept were 1.003 and

0.000, the bias was 0.002, and r2 was 0.931. The scatter plot (Figure 3a) overlays the one-to-one

line and the quantile plot (Figure 3b) is linear, overlies the line, but has a slight discountinuity

near a chlorophyll value of 3. With all 355 data points the statistics are about the same (Table

3).

3.6 Algorithm evaluation with the combined data set

Combining the results for the unpackaged and packaged data sets provides an estimate

of how the algorithm might perform if the appropriate algorithm parameters (Table 4) can be

smoothly (or unsmoothly) varied from unpackaged to packaged regimes. For the combined data

set of 733 points, using the appropriate parameters for each set, 675 (92%) of the points passed

the semi-analytical portion of the algorithm, yielding RMS1 and RMS2 errors in algorithm-

derived chl a of 0.112 and 0.280, respectively. The Type II RMA slope and intercept were 1.0{)9

and 0.004, the bias was -0.001, and r2 was 0.936. Statistics for the entire n=733 set were similar.

The scatter and quantile plots overlaid the one-to-one line closely (Figures 4a and 4b).

3.7 Algorithm evaluation with a modified global data set
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We developeda modified global data set which differs from the evaluation data set

(Maritorena et al., this volume) in two ways. First, the Cota and U. Maryland points were

excluded pending further study of hyper-packaging possibilities (Cota data) and possible

suspended sediments (U. Md. data). Second, the 17 high chl a points in the Carder data set and

the above-water data from EqpPac were included. This data set has 955 data points. We then

developed a set of compromise parameters for our algorithm, shown in Table 4, for use at times

and places where "packaging" is unknown. For this data set and these "average" parameters, 870

points (91%) of the points passed the semi-analytical portion of the algorithm, yielding RMSI

and RMS2 errors in algorithm-derived chl a of 0.173 and 0.441, respectively. The Type II RMA

slope and intercept were 0.999 and 0.003, the bias was 0.004, and r2 was 0863. Statistics for the

entire n=955 set were similar except r2 was higher (0.915). The scatter plot (Figure 5a) looks

evenly clustered about the one-to-one line and the quantile plot (Figure 5b), though wiggly,

overlays the one-to-one line for the most part.

4.0 Discussion

The biggest limitation is the lack of bio-optical field data from around the globe that are

complete with ancillary particle and gelbstoff absorption spectra. These data are needed in order

to assess the spatial and temporal variation in the key algorithm parameters X, Y, S, as(400), and

most importandy, ao(X) and a_(X). In order to derive chl a, it is vitally important to be able to

predict how a+'(X) will vary. Thus, we must study the effect of light history, which is related
to season, cloudiness, latitude, and nutrient history, which is influenced by mixed-layer depth,

upwelling, fiver plumes, and offshore/onshore proximity.

4.1 High b b pixels

Since the R_ model does not specifically account for absorption and backscattering from

suspended sediments or coccolithophores or for reflection from the bottom, a method is needed

to determine which pixels are influenced by any of these. Such waters will be referred to as

"high-bb Case 2" waters, as opposed to high-gelbstoff Case 2 waters, which the model explicitly

accounts for. Although not yet implemented, a possible means of identifying high-bb Case 2

stations is to examine the R_(670):R_(555) ratio. Retaining bb(X) in the denominator of Eq. 1 is

required, and the site-specific behavior of sediment absorption characteristics must be known.

4.2 a_ in other environments

We have learned from trends in the data observed so far that the semi-analytical algorithm

performs as well with temperate summer data (TI'010 north of 450 and MLML 2 north of 50 °)

as it does with subtropical data for all seasons. How, then, might temperate data from other

seasons and/or data from upwelling and high-latitude areas differ from the temperate summer,

non-upwelling data?

To address this question we compare a,(_,) data from MLML 1 (May, 50o-600 N), MLML

2 (August, 500-600 N), TI'010 (July, north of 45°), Monterey Bay (fall, upwelling region), and

2 coastal upwelling stations from the Arabian Sea. Although these two data points were collected

from a subtropical summer environment, the water was about 4 °C cooler than offshore waters,

13



indicating a lower-light, nutrient-rich, upwelling source, conditioning the water for highly
packaged,fast-growingspeciessuchasdiatoms. This is manifestin Figure6, wherethesedata
fail amongthe more packagedpoints. Here, the ratios of the blue peak to the red peak,
a,(443):a,(675),areplottedasa functionof the heightof the redpeakitself, a,(675),which can
be thoughtof asan indicatorof pigmentconcentration.Thesubtropicalalgorithmvalues(solid
line) andtrend lines for thehigh andlow out-lying points for theentire dataset (dashedlines)
are also shown. The dotted line representsa median trend for the entire data set, and it
approximatesthemeanline for two yearsof datafrom theSouthernCalifornia Bight (SCB) (B.
G. Mitchell, personalcommunication).The SCBdataalso rangedwidely betweenthe top and
bottomdashedcurves.

The first thing to note in Figure 6 is how well the subtropicalline is followed by the
high-latitudesummerdata. In fact, two of thesummer"I'T010 points along the Washington coast

fail among the highest of the subtropical data. The phaeocystis-rich, spring-bloom, MLML 1

data, however, represent data with the lowest specific absorption coefficients of the entire study.

Similarly, upwelling data from the Arabian Sea and Monterey Bay fail below the median line for

the data set. These data trends suggest that there is less packaging in summer temperate data

than at other times. Maximal packaging appears associated with high-latitude, low-light, spring

bloom stations (MLML 1) and with upwelling sites. The data also suggest that a single global

algorithm will lack the accuracy needed to address data sets that include subtropical, high-

latitude, and upwelling areas. For the non-subtropical areas, some of the parameters in Table 1

need to be functions of region and season.

In addition to the numerical filter approach mentioned above, one trend in the data that

will be exploited to condition a smooth transition between a subtropical algorithm and upwelling

sites or between temperate versions for different seasons is that sites with heavily packaged

pigments have relatively low stability in the upper water-column. For several stations, we found

that the temperature difference between the sea surface and the top of the permanent thermocline

was minimal when packaging was highest. The MLML2 temperatures were 4-5 °(2 warmer than

for MLML 1 along the same transect line, while both share essentially the same permanent

thermocline. Also, the Arabian Sea upwelling stations had water 3--4 °(2 cooler than found

offshore, while again sharing a common permanent thermocline.

Low-temperature anomalies have been used extensively to predict availability of major

nutrients. Kamykowski and Zentara (1986) and Kamykowski (1987) used the anomalies relative

to historical monthly mean temperatures for a given location to predict nutrient availability, while

Gong et ai. (1995) used anomalies relative to the temperature at the top of the permanent

thermocline to predict nitrogen levels. Significant injections of nitrogen into surface waters are

typically followed by blooms of larger-celled phytoplankton such as diatoms or phaeocystis,

resulting in high packaging. It is consistent with these trends, then, to explore ways of

conditioning changes in the algorithm parameters for a,(_,) based on sea-surface temperature

measurements from satellites.

While we can observe subtle hints of a strategy to develop a truly global algorithm, it

would be premature to presently attempt to seamlessly adjust the subtropical algorithm to address

all high-latitude, upwelling or other less stratified environments. Much more data are needed

before attempting such a task. Researchers can, however, develop a,(_.)/a,(675) vs. a,(675) and

chl a vs. a,(675) relationships specific to their favorite study region, noting seasonal changes.
These relationships can be used to modify the subtropical algorithm to improve its performance
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on a regionalbasis. A methodto transitionbetweenregionswith packagingdifferencessimilar
to thoseexpressedin Tables1 and 4 appears feasible now, however, using numerical filters and

space-based data.

5.0 Conclusions

A semi-analytical algorithm was tested with a total of 733 points of either unpackaged-

or packaged-pigment data, with corresponding algorithm parameters for each data type. The

"unpackaged" type consisted of data sets that were generally consistent with the Case 1 CZCS

algorithm and other well calibrated data sets. The "packaged" type consisted of data sets

apparently containing somewhat more packaged pigments, requiring modification of the

absorption parameters of the model consistent with the CalCOFI study area. This resulted in two

equally divided data sets. A more thourough scrutiny of these and other data sets using a semi-

analytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific

environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels

including the 412 nm channel, while most other algorithms are not, a means of testing data sets

for consistency was sought. A numerical filter was developed to classify data sets into the above

classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity

of such numerical filters to measurement resulting from atmospheric correction and sensor noise

errors requires further study.

The semi-analytical algorithm performed superbly on each of the data sets after

classification, resulting in RMS 1 errors of 0.107 and 0.121, respectively, for the unpackaged and

packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1

performance was 0.114.

While these numbers appear rather sterling, one must bear in mind what mis-classification

does to the results. Using an average or compromise parameterization on the modified global

data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the

global evaluation data set (Maritorena et al., this volume) yielded an RMS1 error of 0.284

(O'Reilly and Maritorena, this volume). So, without classification, the algorithm performs better

globally using the average parameters than it does using the unpackaged parameters.

Finally, the effects of even more extreme pigment packaging (Figure 6) must be examined

in order to improve algorithm performance at high latitudes. Note, however, that the North SEa

and Mississippi River plume studies contributed data to the packaged and unpackaged classess,

respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case

2 waters do not seriously degrade performance of the semi-analytical algorithm.
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Table 1. Parametersfor theCase2 chlorophyll algorithm;seetext for definitions.

Z,

bbw (m -1)

a_ (m -l)

ao

al

a2

a3

wavelength dependent parameters

412 443 490 510

0.003341 0.002406 0.001563 0.001313

0.00480 0.00742 0.01632 0.03181

2.20 3.59 2.27 1.40

0.75 0.80 0.59 0.35

-0.5 -0.5 -0.5 [ -0.5

0.010 0.010 0.010 0.010

Xo

X 1 2.058

Yo -1.13

Yl [ 2.57

555

0.000929

0.03181

0.42

0.010

wavelength independent
m

-0.00182

parameters

S 0.0225 co 0.2818

Po 56.8 c_ -2.783

p_ 1.03 c2 1.863

I c3 I -2.387

Table 2. List of cruises with optical and bio-optical data collected by the University of South

Florida (Carder data set). Numbers in parenthesis in the far left column indicate the number of

stations included in the global evaluation data set.

cruise start date end date region

MLML 2 13 Aug 91 29 Aug 91 North Atlantic, 42°N--60°N

TT010 20 Jul 92 02 Aug 92 North Pacific, 24°N-48°N

GOMEX 10 Apr 93 19 Apr 93

COLOR ] 31 May 93 09 Jun 93
I

TN042 29 Nov 94 18 Dec 94

TN048 21 Jun 95 13 Jul 95 [
!

# stations

7 (3)

10 (10)

Northern Gulf of Mexico I 21 (17)

Northern Gulf of Mexico 13 (4)

Arabian Sea 12 (12)

Arabian Sea 41 (41 )

total = 104 (87)
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Table 3, Summaryof regression statistics for each data set tested. The unpackaged data consists

of the Carder, EqPac above-surface, EqPac below-surface, and NABE data sets. The packaged

data consists of the CalCOFI, AMT, and North Sea data sets. The combined data consists of the

unpackaged and packaged data, and uses appropriate algorithm parameters for each. The global

data consists of the global evaluation data set, minus the Cota and U. Maryland data plus the

high-chlorophyll Carder and EqPac above-surface data, and uses one set of average algorithm

parameters for the whole data set. SA indicates that only the modeled values that passed the

semi-analytical portion of the algorithm are used (including blended values). SA+EMP indicates

that all modeled values--semi-analytical, blended, and empirical--are used. All statistics except

RMS2 are calculated from Iog|0-transformed variables.

data set

Carder

Carder

Carder

Carder

unpackaged

unpackaged

packaged

packaged

combined

combined

global

global

variable

chl SA

chl SA+EMP

%(675) SA

ag(400) SA

chl SA

chl SA+EMP

chl SA

chl SA+EMP

chl SA

chl SA+EMP

chl SA

n

86

104

82

26

339

378

341

355

675

733

870

chl SA+EMP 1955 [

intercept slope bias

0.019 1.020 0.010

-0.007 0.977 -0.002

0.098 1.052 -0.008

-0.278 0.905 -0.186

0.001 1.003 0.000

0.002 1.001 0.001

0.000 1.003 0.002

0.005 1.010 0.000

0.004 1.009 -0.001

0.004 1.008 0.001

0.003 0.999 0.004

0.005 1.000 0.005

R2

0.921

0.963

0.898

0.751

0.943

0.962

0.931

0.950

0.936

0.958

0.863

0.915

RMS1

0.122

0.132

0.131

0.252

0.103

0.107

0.118

0.119

0.112

0.114

0.173

0.171

RMS2

0.289

0.300

0.302

0.405

0.240

0.251

0.289

0.292

0.280

0.285

0.441

I 0.436
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Table 4. Algorithm parametersusedwith the "packaged"and modified global data sets. All

algorithm parameters not listed here are the same as in Table 1. The values of a3(_,) shown apply

to all of the SeaWiFS wavelengths. The equation to determine chl a from a,(675) for this data

set is given by Equation 21.

parameter packaged global

ao(412) 2.02 2.11

ao(443) 3.16 3.38

%(490) 2.00 2.14

a3(_.) 0.020 0.018

Po 2.404 2.168

Pt 1.294 1.234

P2 0.052 0.052

Co 0.4818 0.3147

ct -2.783 -2.859

c2 1.863 2.007

c3 -2.387 -1.730
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LIST OF FIGURE CAPTIONS

Figure 1. Algorithm performance for Carder data set. Top panels are observed vs. modeled chl

a, middle panels are observed vs. modeled apu(675), and bottom panels are observed vs. modeled

as(400). Left panels are scatter plots and right panels are quantile-quantile plots. The lines are
the one-to-one lines in all panels. SA (cross) indicates points which are calculated semi-

analytically or by a blend of semi-analytical and empirical values. EMP (diamond)

indicatespoints that are calculated empirically.

Figure 2. Algorithm performance for and analysis of data sets passing the "unpackaged"

numerical filter. Top left panel, a) scatter plot of observed vs. modeled chl a (mg m 3). The

dotted line is the one-to-one line. Top right panel, b) quantile-quantile plot of observed vs.

modeled chl a. Middle left panel, c) observed chl a vs. rzs, with the CZCS algorithm line C =

1.14[r25] +71. Middle right panel, d) r_2 vs. r25, with the line, r, 2 = 0.95[r25] °_, used to identify

"unpackaged" Case 1 data (above line). Bottom left panel, e) modeled as(400) (m _) vs. observed

chl a.

Figure 3. As Figure 2 but for data sets not passing the "unpackaged" numerical filter.

Figure 4. As Figure 2 but for both unpackaged and packaged data sets.

Figure 5. As Figure 2, but for the modified global data set.

Figure 6. a,(443)/a,(675) vs. a,(675) for stations from various non-subtropical environments.
The solid line is the function used in the semi-analytical algorithm. The dashed lines represent

the lower and upper bounds for all of the absorption ratio data that we have collected and the

dotted line approximates the median trend.
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